
3.2 Decoder and Symbol Error Probability

3.9. Knowing the characteristics of the channel and its input, on the re-
ceiver side, we can use this information to build a “good” receiver.

We now consider a part of the receiver called the (channel) decoder.
Its job is to guess the value of the channel input11 X from the value of the
received channel output Y . We denote this guessed value by X̂. A “good”
receiver is the one that (often) guesses correctly.

Quantitatively, to measure the performance of a decoder, we define a
quantity called the (symbol) error probability.

Definition 3.10. The (symbol) error probability, denoted by P (E), can
be calculated from

P (E) = P
[
X̂ 6= X

]
.

3.11. A “good” detector should guess based on all the information it has.
Here, the only information it receives is the value of Y . So, a detector is a
function of Y , say, g(Y ). Therefore, X̂ = g(Y ). Sometimes, we also write
X̂ as X̂(Y ) to emphasize that the decoded value X̂ depends on the received
value Y .

Definition 3.12. A “naive” decoder is a decoder that simply sets X̂ = Y .

Example 3.13. Consider the BAC channel and input probabilities specified
in Example 3.8. Find P (E) when X̂ = Y .

11To simplify the analysis, we still haven’t considered the channel encoder. (It may be there but is
included in the equivalent channel or it may not be in the system at all.)
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3.14. For general DMC, the error probability of the naive decoder is

Example 3.15. With the derived formula, let’s revisit Example 3.8 and
Example 3.13

Example 3.16. Find the error probability P (E) when a naive decoder
is used with a DMC channel in which X = {0, 1}, Y = {1, 2, 3}, Q =[

0.5 0.2 0.3
0.3 0.4 0.3

]
and p = [0.2, 0.8].

3.3 Optimal Decoding for BSC

To introduce the idea of optimal decoding, let’s revisit the binary symmetric
channel in Example 3.1. Here, we will attempt to find the “best” decoder.
Of course, by “best”, we mean “having minimum value of error probability”.

3.17. It is interesting to first consider the question of how many reasonable
decoders we can use.
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So, only four reasonable detectors.

Example 3.18. Suppose p = 0. Which detector should we use?

Example 3.19. Suppose p = 1. Which detector should we use?

Example 3.20. Suppose p0 = 0. Which detector should we use?

Example 3.21. Suppose p0 = 1. Which detector should we use?

Example 3.22. Suppose p = 0.1 and p0 = 0.8. Which detector should we
use?

3.23. To formally compare the performance of the four detectors, we now
derive the formula for the error probability of the four detectors. First, we
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apply the total probability theorem by using the events [X = x] to partition
the sample space.

P (C) =
∑
x

P (C |[X = x])P [X = x]

Of course, event C is the event [X̂ = X]. Therefore,

P (C) =
∑
x

P
[
X̂ = X |X = x

]
P [X = x] =

∑
x

P
[
X̂ = x |X = x

]
P [X = x].

For binary channel, there are only two possible value of x: 0 or 1. So,

P (C) =
∑

x∈{0,1}

P
[
X̂ = x |X = x

]
P [X = x]

= P
[
X̂ = 0 |X = 0

]
P [X = 0] + P

[
X̂ = 1 |X = 1

]
P [X = 1]

= P
[
X̂ = 0 |X = 0

]
p0 + P

[
X̂ = 1 |X = 1

]
(1− p0)

X̂ P
[
X̂ = 0 |X = 0

]
P
[
X̂ = 1 |X = 1

]
P (C) P (E)

Y 1− p 1− p 1− p p

1− Y p p p 1− p
1 0 1 1− p0 p0

0 1 0 p0 1− p0

3.4 Optimal Decoding for DMC

Example 3.24. Let’s return to Example 3.16 and find the error probability
P (E) when a specific decoder is used. In that example, we have X = {0, 1},

Y = {1, 2, 3}, Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
and p = [0.2, 0.8]. The decoder table

below specifies the decoder under consideration:

Y X̂

1 0
2 1
3 0
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Using MATLAB, we can find the error probability for all possible rea-
sonable detectors in this example.

3.25. For general DMC, it would be tedious to list all possible detectors.
In fact, there are |X ||Y| reasonable detectors.

It is even more time-consuming to try to calculate the error probability
for all of them. Therefore, in this section, we will derive the formula of the
“optimal” detector.

3.26. We first note that to minimize P (E), we need to maximize P (C).
Here, we apply the total probability theorem by using the events [Y = y] to
partition the sample space:

P (C) =
∑
y

P (C |[Y = y])P [Y = y].

Event C is the event [X̂ = X]. Therefore,

P (C) =
∑
y

P
[
X̂ = X |Y = y

]
P [Y = y].

Now, recall that our detector X̂ is a function12 of Y ; that is X̂ = g(Y ) for
some function g. So,

P (C) =
∑
y

P [g (Y ) = X |Y = y ]P [Y = y]

=
∑
y

P [X = g (y) |Y = y ]P [Y = y]

In this form, we see13 that for each Y = y, we should maximize P [X = g (y) |Y = y ].
Therefore, for each y, the decoder g(y) should output the value of x which
maximizes P [X = x|Y = y]:

goptimal (y) = arg max
x

P [X = x |Y = y ] .

12This change of notation allows one to see the dependence of X̂ on Y .
13We also see that any decoder that produces random results (on the support of X) can not be better

than our optimal detector. Outputting the value of x which does not maximize the a posteriori probability
reduces the contribution in the sum that gives P (C).
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In other words,

x̂optimal (y) = arg max
x

P [X = x |Y = y ]

and
X̂optimal = arg max

x
P [X = x |Y ] .

Definition 3.27. The optimal detector is the detector that maximizes the
a posteriori probability P [X = x |Y = y ]. This detector is called the max-
imum a posteriori probability (MAP) detector:

x̂MAP (y) = x̂optimal (y) = arg max
x

P [X = x |Y = y ] .

• After the fact, it is quite intuitive that this should be the best detector.

Recall that the decoder don’t have a direct access to the X value.

◦ Without knowing the value of Y , to minimize the error probability,
it should guess the most likely value of X which is the value of x
that maximize P [X = x].

◦ Knowing Y = y, the decoder can update its probability about x
from P [X = x] to P [X = x|Y = y]. Therefore, the detector should
guess the value of the most likely x value conditioned on the fact
that Y = y.

3.28. We can “simplify” the formula for the MAP detector even further.

Fist, recall “Form 1” of the Bayes’ theorem:

P (B|A) = P (A|B)
P (B)

P (A)
.

Here, we have B = [X = x] and A = [Y = y].
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Therefore,
x̂MAP (y) = arg max

x
Q (y |x) p (x) . (6)

3.29. A recipe to find the MAP detector and its corresponding error prob-
ability:

(a) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(b) Select (by circling) the maximum value in each column (for each value
of y) in the P matrix.

• If there are multiple max values in a column, select only one.

(i) The corresponding x value is the value of x̂ for that y.

(ii) The sum of the selected values from the P matrix is P (C).

(c) P (E) = 1− P (C).
Example 3.30. Find the MAP detector and its corresponding error prob-
ability for the DMC channel in Example 3.24 (and Example 3.16) when the
prior probability vector is p = [0.2, 0.8].

Example 3.31. Repeat Example 3.30 but with p = [0.6, 0.4].
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3.32. MAP detector for BSC: For BSC,

x̂MAP (y) = arg max
x∈{0,1}

Q (y |x) p (x) .

Therefore,

x̂MAP (0) =

{
1, when Q (0 |1) p (1) > Q (0 |0) p (0) ,
0, when Q (0 |1) p (1) < Q (0 |0) p (0) ,

and

x̂MAP (1) =

{
1, when Q (1 |1) p (1) > Q (1 |0) p (0) ,
0, when Q (1 |1) p (1) < Q (1 |0) p (0) .

Definition 3.33. In many scenarios, the MAP detector is too complicated
or the prior probabilities are unknown. In such cases, we may consider using
a detector that ignores the prior probability term in (6). This detector is
called the maximum likelihood (ML) detector:

x̂ML (y) = arg max
x

Q (y |x) . (7)

Observe that

• ML detector is generally sub-optimal

• ML detector is the same as the MAP detector when X is a uniform
random variable.

◦ In other words, when the prior probabilities p(x) are uniform, the
ML detector is optimal.
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Example 3.34. Find the ML detector and the corresponding error proba-
bility for the system in Example 3.22 in which we have BSC with p = 0.1
and p0 = 0.8.

Note that

• the prior probabilities p0 (and p1) is not used

• the ML detector and the MAP detector are the same in this example

◦ ML detector can be optimal even when the prior probabilities are
not uniform.

Recall that for BSC with x̂(y) = y, the error probability P (E) = p. So,
in this example, because x̂ML(y) = y, we have P (E) = p = 0.1.

3.35. In general, for BSC, it’s straightforward to show that

(a) when p < 0.5, we have x̂ML(y) = y with corresponding P (E) = p.

(b) when p > 0.5, we have x̂ML(y) = 1−y with corresponding P (E) = 1−p.

(c) when p = 0.5, all four reasonable detectors have the same P (E) = 1/2.

• In fact, when p = 0.5, the channel completely destroys any con-
nection between X and Y . In particular, in this scenario, X |= Y .
So, the value of the observed y is useless.
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3.36. A recipe to find the ML detector and its corresponding error proba-
bility:

(a) Select (by circling) the maximum value in each column (for each value
of y) in the Q matrix.

• If there are multiple max values in a column, select only one.

• The corresponding x value is the value of x̂ for that y.

(b) Find the P matrix by scaling elements in each row of the Q matrix by
their corresponding prior probability p(x).

(c) In the P matrix, select the elements corresponding to the selected po-
sitions in the Q matrix.

(d) The sum of the selected values from the P matrix is P (C).

(e) P (E) = 1− P (C).

Example 3.37. Solve Example 3.34 using the recipe in 3.36.

Example 3.38. Find the ML detector and its corresponding error proba-
bility for the DMC channel in Example 3.24 (, Example 3.16, and Exam-

ple 3.30) in which X = {0, 1}, Y = {1, 2, 3}, Q =

[
0.5 0.2 0.3
0.3 0.4 0.3

]
and

p = [0.2, 0.8].

38


